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Rational structure of X(N) over Q and Explicit Galois
action on CM points∗

Tonghai Yang

Abstract In this note, we review a less-known rational structure on the Siegel modular
variety X(N) = Γ(N)\Hg over Q for integers g,N ≥ 1. We then describe explicitly how
Galois groups act on CM points on this variety. Finally, we give another proof of the
Shimura reciprocity law using the result and the q-expansion principle.
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1 Introduction

Let g ≥ 1 and N ≥ 1 be positive integers, and let Hg be the Siegel upper half plane of genus g,

i.e., the set of symmetric complex matrices τ of order g such that ℑ(τ) > 0. Let

Γ(N) = {γ ∈ Spg(Z) : γ ≡ 1 (mod N)}

be the main congruence subgroup and let X(N) = Γ(N)\Hg be the complex manifold which

turns out to be an algebraic variety. To construct cryptosystem using genus g (g = 1, 2)

CM curves, it is important to compute a CM point in X(N) and its Galois conjugates in

X(N) explicitly so that one can compute f(τ) explicitly for some explicit modular functions

(invariants) f on X(N). For this, one needs to interprets X(N) in terms of moduli. There

are two well-known moduli schemes: X0 over Q(µN ) whose C-points give X(N), and X over

Q whose C-points give (Z/N)×-copies of X(N) (see Section ?? for review), which is thus not

connected. Here µN is the group of N -th root of unity. Neither one is handy for our purpose

as the first one is only defined over Q(µN ) and the second one has extra (Z/N)× in addition

to X(N). There turns out to be a third non-standard moduli scheme X ∗ over Q, whose C-
points also give X(N), which is natural and good for our purpose. This is constructed as a

quotient of X in Section ??. This moduli interpretation is a special case of general Shimura

variety construction although not explicitly appeared in the literature and should be of interest

to publicize it. Using this interpretation, we give an explicit Galois action on a CM point

in X(N) in Section ??. This is the main purpose of this note, inspired by my joint project

with C. Castello, A. Deines-Shartz, and K. Lauter [?] on computing genus two curves with 2-

torsion points. As a byproduct, We give in Section ?? a direct proof of the well-known Shimura
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reciprocity law, which Shimura developed in 1970s (see for example [?]), and its explicit version

given by Streng recently [?].

As just mentioned, this work was motivated while working with Castello, Deines-Shartz, and

Lauter during my Microsoft visit in Fall 2013. I thank them for the inspiration and the joint

work. During that time, I did not realize the existence of Streng’s excellent work on explicit

Shimura reciprocity law in [?] (otherwise, this note would not have existed). My approach is

very different from his. The last section of this work is inspired by his work. I thank B. Conrad,

B. Howard, M. H. Nicole, M. Rapoport, and Xinyi Yuan for helpful discussion. This work is

done during my visit to Microsoft in Fall 2013 and the MPIM-Bonn in Spring 2014. I thank

both institutes for providing me excellent working condition. Finally, I thank the anonymous

referee for his/her careful reading and suggestion/comments on the early version of this paper.

2 Open modular variety X(N) over Q
Let G = GSpg be the generalized symplectic group (matrices of order 2g) with similitude

character µ, and let G0 = Spg be the usual symplectic group, i.e., the kernel of µ:

1→ Spg → GSpg → Gm → 1.

There are two well-known moduli spaces associated to X(N) which we now briefly review, and

refer to [?] for more thorough review. Let µN be the group of N -th roots of unity in C, and
fix an isomorphism µN

∼= Z/N and identify them in this paper. Then any principally polarized

abelian variety A over a field F (of character prime to N), the Weil pairing on the N -torsion

A[N ] becomes a symplectic pairing

⟨ , ⟩we : A[N ](F )×A[N ](F )→ Z/N,

which is perfect if A[N ](F ) = A[N ].

Let X be the moduli space over Z[ 1N ] as follows. For a Z[ 1N ]-scheme S, X (S) consists of

isomorphism classes of the triplets (A, λ, ϕ), where

1. A is an abelian scheme over S,

2. λ : A→ A∨ is a principal polarization of A, and

3. ϕ : (Z/N)2g → A[N ](S) is locally a similitude symplectic isomorphism, i.e., ⟨ϕ(x), ϕ(y)⟩we =

d⟨x, y⟩ for some d ∈ (Z/N)× (both ϕ and d may vary depending on local connected com-

ponents of S). Here we use the standard sympletic form on (Z/N)2g:

⟨x, y⟩ =
g∑

i=1

xiyg+i −
g∑

i=1

xg+iyi.

Notice that due to the freedom on d ∈ (Z/N)×, the moduli problem does not depend on the

choice of our identification µN
∼= Z/N . It is well-known that this moduli space is represented

by a smooth Deligne-Mumford stack, still denoted by X , over Z[ 1N ]. It is actually a smooth

scheme when N ≥ 3.

Let X0 be the moduli space over Z[ 1N , µN ] as follows. For a Z[ 1N , ζN ]-scheme S, X (S)
consists of isomorphism classes of the triplets (A, λ, ϕ), where
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1. A is a abelian scheme over S,

2. λ : A→ A∨ is a principal polarization of A, and

3. ϕ : (Z/N)2g → A[N ](S) is a symplectic isomorphism, i.e., ⟨ϕ(x), ϕ(y)⟩we = ⟨x, y⟩.

It is also well-known that this moduli space is represented by a smooth Deligne-Mumford stack,

still denoted by X0 , over Z[ 1N , µN ]. It is again a smooth scheme when N ≥ 3.

In terms of Shimura datum, one has the following. Let

K(N) = {g ∈ G(Ẑ) : g ≡ 1 (mod N)}, K0(N) = K(N) ∩G0(Ẑ).

Then X is the Shimura variety associated to K, i.e.,

X (C) = G(Q)\(H±
g ×G(Af )/K(N)) = (Γ(N)\Hg)× (Z/N)×.

Moreover,

X0(C) = X(N) = G0(Q)\(Hg ×G0(Af )/K0(N))

is the connected component of X (C).
It turns out that there is a (less known) third Shimura variety X ∗ over Z[ 1N ] directly related

to X(N). It is associated to the compact open subgroup of G

K∗(N) = {g ∈ G(Ẑ) : g ≡ ( 1 0
0 ∗ ) (mod N)}.

By the strong approximation theorem, one has

X ∗(C) = G(Q)\(H±
g ×G(Af )/K

∗(N)) = X(N).

X0(C) ↪→ X (C) � (Z/N)×,

and

(Z/N)× � X (C) � X ∗(C).

Here the action is given by d ◦ [z, g] = [z, gv(d)], the natural project from X (C) to X ∗(C) has
fiber (Z/N)×. Here v(d) = ( 1 0

0 d ) with respect to the standard symplectic basis of (Z/N)2g.

To give the moduli problem for this variety, let (Z/N)× act on X as follows:

d ◦ (A, λ, ϕ) = (A, λ, ϕ ◦ v(d))

The action is free, so there is a quotient stack (scheme for N ≥ 3) X ∗ = X/(Z/N)× which

represents the following quotient moduli problem over Z[ 1N ]. For a Z[ 1N ]-scheme S, X ∗(S)

consists of the equivalence classes of the triples (A, λ, ϕ) as in X (S), but with the following

equivalence relation: (A1, λ1, ϕ1) ∼ (A2, λ2, ϕ2) if and only if there is an S-isomorphism f :

A1 → A2 commuting with the polarizations λi and ϕ2 = ϕ1 ◦ v(d) for some d ∈ (Z/N)×.

Alternatively, X ∗(S) is the equivalence classes of the triples (A, λ, e⃗) where (A, λ) is a principally

polarized abelian scheme over S, and e⃗ = (e1, · · · , e2g) is locally an ordered similitude symplectic

basis of A[N ](S) with respect to the Weil pairing, i.e., for i ≤ j

⟨ei, ej⟩we =

{
d if 1 ≤ i ≤ g, j = g + i,

0 otherwise,
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for some d ∈ (Z/N)×. A similitude symplectic basis is called a symplectic basis if d = 1. Two

such triples (A, λ, e⃗) ∼ (A′, B′, e⃗′) if and only if there is an S-isomorphism f : (A, λ)→ (A′, λ′)

such that f(ei) = e′i for 1 ≤ i ≤ g and f(ei) = de′i for all g + 1 ≤ i ≤ 2g and locally some

d ∈ (Z/N)×.

Proposition 2.1. One has over Z[ 1N , µN ]

X ∗ = X0.

Proof. Let e⃗ = (e1, e2, · · · , e2g) be the standard symplectic basis of (Z/N)2g. Given two triples

(A, λ, ϕ) and (A′, λ′, ϕ′) in X0(S) for an Z[ 1N , µN ]-scheme S. Suppose that they are equal

in X ∗(S), i.e., there is an S-isomorphism f : (A, λ) → (A′, λ′) and d ∈ (Z/N)× such that

ϕ′ = f ◦ϕ◦v(d). Since ϕ and ϕ′ are symplectic isomorphisms, and f preserves the Weil pairing,

one has

1 = ⟨ϕ′(ei), ϕ
′(ei+g)⟩we = ⟨ϕ(v(d)ei), ϕ(v(d)eg+i)⟩we = ⟨ei, deg+i⟩ = d ∈ (Z/N)×.

So (A, λ, ϕ) = (A′, λ′, ϕ′) in X0(S). This gives an injection X0 → X ∗ over Z[ 1N , µN ]. To verify

the surjectivity, let (A, λ, ϕ) ∈ X ∗(S). Let Pi = ϕ(ei), then there is d ∈ (Z/N)× such that

⟨Pi, Pj⟩we = d⟨ei, ej⟩.

Take ϕ′ = ϕ ◦ v(d−1), then one sees that ϕ′ is an symplectic isomorphism. So (A, λ, ϕ) =

(A, λ, ϕ′) ∈ X ∗(S) is the image of (A, λ, ϕ′) ∈ X0(S).

Remark 2.2. There is another moduli interpretation for X(N) over Q as follows. Let X ′ be

the moduli space of the equivalence classes of the triplets (A, λ, ϕ) where (A, λ) are principally

polarized abelian schemes as above, and ϕ : (Z/N)g×(µN )g → A[N ] is a Galois equivariant map

which respects the pairings. The equivalence is the usual one as in the moduli interpretation

of X . Here the pairing at the right hand side is the Weil pairing while the one at the left hand

side is the obvious one

⟨(n, ξ), (ñ, ξ̃)⟩ =
g∑

i=1

ξ̃ni
i −

g∑
i=1

ξñi
i .

The natural maps

X ′ → X0 → X → X ∗

are defined over Q(µN ). One can prove that the composition X ′ → X ∗ is actually isomorphism

defined over Q. This remark belongs to the anonymous referee.

Remark 2.3. The moduli variety X ∗ is quite natural both in terms of Shimura datum and in

terms of moduli interpretation. It is curious and a little strange that it has not appeared in

literatures to my best knowledge. For example, it could naturally have been in [?, Table(7.4.3)

], its analogues for Γ1(N) and Γ0(N) are both there.

Remark 2.4. If we let N change and temporarily write X (N) for X and take inverse limit.

Then the pro-Shimura variety X = lim←−X (N) is a right G(Af )-module but far from connected.

On the other hand X ∗ = lim←−X
∗(N) = X/v(Ẑ×) is a connected quotient of X . However, only

the normalizer of v(Ẑ×) in G(Af ), not the whole G(Af ), can act on X ∗.
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3 Complex multiplication and Galois orbit of a CM point

Let (E,Φ) be a CM number field with CM type Φ, and let (Ẽ, Φ̃) be the reflex CM field with

reflex CM type. Let M be a Galois extension of Q containing both E and Ẽ. Recall the type

norm on elements

NΦ : E× → Ẽ×, x 7→
∏
σ∈Φ

σ(x),

and on ideals

NΦ(a) = (
∏
σ∈Φ

σ(a)OM ) ∩ OẼ .

Here M is a (any) Galois extension of Q containing both E and Ẽ. For the convenience of

the reader, we first recall the well-known main theorem of Shimura and Taniyama on complex

multiplication (see [?], [?]). A CM abelian variety over a field L ↪→ C of CM type (E,Φ)

is in this paper a pair (A, ι), where A is an abelian variety over L of dimension 1
2 [E : Q],

ι : OE → EndL(A) is an isomorphism, and there is a C basis {ωσ, σ ∈ Φ} on ΩA/C such

i(z)∗ωσ = σ(z)ωσ. For a number field E, we denote Ef for the finite adeles of E, and denote

ÔE for the ring of integers of Ef .

Theorem 3.1. (Shimura-Taniyama) Let b ∈ Ẽ×
f and σ ∈ Aut(C/Ẽ) such that σ|Ẽab = σb−1

via the Class field theory (Artin map). Here Ẽab is the maximal abelian extension of Ẽ. Let

(A, ι) be a CM abelian variety over C of CM type (E,Φ). Then there is an isomorphism

f : Cg/Φ(a) ∼= A for some fractional ideal a of E over C. Fix such an isomorphism f (and a),

there is a unique isomorphism f ′ : Cg/Φ(aNΦ̃ b)→ Aσ over C such that the following diagram

commutes:

E/a
f◦Φ //

·NΦ̃(b)

��

Ator

σ

��
E/aNΦ̃(b)

Φ◦f ′
// Aσ

tor

Here the multiplication by the idele in the column makes sense via the canonical isomorphism

E/a = ⊕pEp/ap. Here Ep (resp. ap) is the completion of E (resp. a) with respect to prime

ideal p.

A CM point of CM type (E,Φ) in X ∗(L), for a field L ⊂ C, is a tuple (A, ι, λ, ϕ) where

(A, ι) is a CM abelian variety of CM type (E,Φ) and (A, λ, ϕ) ∈ X ∗(L) such that the Rosati

involution associated to λ induces the complex conjugation on E. Let CM(E,Φ) be the set of

CM points in X ∗(C) = X(N) of CM type (E,Φ).

Let R be a (communicative) ring, and let V be a free R-module of rank 2g with non-

degenerate symplectic form ⟨ , ⟩. A basis a⃗ = (a1, · · · , a2g) is called a similitude symplectic

basis if the associated matrix

(⟨ai, aj⟩) =
(

0 dIg
−Ig 0

)
for some d ∈ R×. When d = 1, we call it a symplectic basis.

Proposition 3.2. There are bijections among following sets.

(1) The set CM(E,Φ) ⊂ X(N) of CM points of CM type (E,Φ).
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(2) The set of points [τ ] ∈ X(N) such that Λτ = τZg + Zg ⊂ Cg is a (projective) OE-

module via Φ = {σ1, · · · , σg}, where E acts on Cg via ι(z)x = diag(σ1(z), · · · , σg(z))x for

z ∈ E and x ∈ Cg.

(3) The set of equivalence classes of (a, ξ, a⃗), where a is a fractional ideal of E, ξ ∈ E×

such that ξ̄ = −ξ such that a is integral and self-dual with respect to the symplectic pairing

(Riemann form)

Eξ : E × E → Q, Eξ(x, y) = trE/Q ξxȳ, (3.1)

i.e., ξ∂Eaā = OE, where ∂E is the different of E. a⃗ = (a1, · · · , a2g) is an ordered symplectic

basis of a with respect to Eξ. Two triples (a, ξ, a⃗) and (b, η, b⃗) are equivalent if there is r ∈ E×

and γ ∈ Γ(N) such that rr̄ ∈ Q×, a = rb, ξ = (rr̄)−1η, and a⃗ = rγb⃗.

(3’) The set of equivalence classes of (a, ξ, 1
N a⃗), where a is a fractional ideal of E, ξ ∈ E×

such that ξ̄ = −ξ such that 1
N a⃗ is a symplectic basis for 1

N a/a with respect to the Weil pairing

⟨ x
N

,
y

N
⟩we = Eξ(x, y) (mod N).

Two triples (a, ξ, 1
N a⃗) and (b, η, 1

N b⃗) are equivalent if there is r ∈ E× such that rr̄ ∈ Q×, a = rb,

ξ = (rr̄)−1η, and 1
N a⃗ = 1

N r⃗b (i.e., a⃗ ≡ r⃗b (mod N)).

(4) The set of equivalence classes of triples (Aa, Eξ,
1
N a⃗) where Aa = Cg/Φ(a) is a CM

abelian variety of CM type (E,Φ) over C, Eξ, as defined in (??), is a Riemann form on

Aa, which gives a principally polarization on Aa, and 1
N a⃗ is a similitude symplectic basis of

Aa[N ] = 1
N a/a with respect to the Weil pairing:

⟨ x
N

,
y

N
⟩we = Eξ(x, y) (mod N).

Two triples (Aa, Eξ, a⃗) and (Ab, Eη, b⃗) are equivalent if there is an r ∈ E such that rr̄ ∈ Q×,

a = rb, ξ = (rr̄)−1η, and 1
N a⃗ = v(d)(r⃗b) in 1

N a/a for some d ∈ (Z/N)×.

Proof. (sketch) The bijection between (1) and (3) follows from X(N) = X0(C) and Theorem

??. The bijection between (1) and (4) follows from X(N) = X ∗(C) and Theorem ??. The

bijection between (3) and (3′) is due to the fact that SL2(Z) � SL2(Z/N) is surjective. Now

we describe the bijection between (2) and (3). Recall that τ ∈ X(N) = X0(C) gives the triple

(Aτ , Eτ ,
1
N e⃗τ ), where Aτ = Cg/Λτ with Λτ = τZg + Zg and principal polarization Eτ = ℑHτ

where

Hτ (x, y) = xtℑ(τ)−1ȳ

is the associated positive definite Hermitian form on Cg, and e⃗τ = (ei)1≤i≤2g with

(e1, e2, · · · , eg) = τ, and (eg+1, · · · , e2g) = Ig.

Notice that e⃗τ is symplectic basis of Λτ with respect to Eτ , and that Hτ (x, y) = Eτ (ix, y) +

iEτ (x, y) (see for example [?] or [?])

Given a triple (a, ξ, a⃗) in (3), let τ = (Φ(ag+1), · · · ,Φ(a2g))−1(Φ(a1), · · · ,Φ(ag)), also de-

noted by τ(a, ξ, a⃗). Then

f : Aτ
∼= Aa, f(z) = (Φ(ag+1), · · · ,Φ(a2g))z,

which sends e⃗τ to a⃗. So the (Aτ , Eτ ,
1
N e⃗τ ) = (Aa, Eξ,

1
N a⃗) ∈ X0(C) = X(N). Via map f ,

Λτ
∼= Φ(a) becomes an OE-module.
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Conversely , if Λτ is an OE-module via Φ, then it is finitely generated and torsion free and

thus projective of rank 1 (comparing the Z-rank). So there is an fractional ideal a of E and an

OE-module isomorphism f : Φ(a) ∼= Λτ , which extends to an isomorphism f : Aa
∼= Aτ . The

Riemann form Eτ on Λτ gives an self-dual sympletic form on a. So there is ξ such that a is

Eξ-self-dual, and that a⃗ = Φ−1f−1(e⃗τ ) is a symplectic basis of a. That is τ = τ(a, ξ, a⃗). This

gives the bijection between (2) and (3).

We will identify each set in Proposition ?? with CM(E,Φ). Given (a, ξ, a⃗) ∈ CM(E,Φ), we

write the associated τ in X(N) as τ = τ(a, ξ, a⃗). It is given by

τ = (Φ(ag+1), · · · ,Φ(a2g))−1(Φ(a1), · · · ,Φ(ag)). (3.2)

View a⃗ as a Q-basis of E, one obtains an embedding

ϵ : E× → GL2g(Q), ϵ(z)ai = zai, (3.3)

and a map

g = g(a, ξ, a⃗) : Ẽ× → GSpg(Q)+, g(z) = ϵ(NΦ̃(z)). (3.4)

The map is well-defined as

Eξ(g(z)(ai), g(z)(aj)) = Eξ(NΦ̃(z)ai,NΦ̃(z)aj) = NΦ̃(z)NΦ̃(z)Eξ(ai, aj) = N(z)Eξ(ai, aj).

One has further µ(g(z)) = N(z). The maps g and ϵ depend on the point τ .

Let Cl(Φ̃, N) be the type class group of modulus N , defined as the quotient of all fractional

ideals of Ẽ prime to N by the subgroup

P (Φ̃, N) = {a ⊂ Ẽ : NΦ̃(a) = µOE , for some µ ≡ 1 (mod N), µµ̄ = N(a)}.

Let H(Φ̃, N) be the associated type class field of Ẽ. For a number field E, we write Ef as its

finite adeles and ÔE as the ring of integers of Ef . The following isomorphism is well-known

Cl(Φ̃, N) ∼= Ẽ×
f /U(Φ̃, N), [b] 7→ [b], (3.5)

where b ∈ Ẽ×
f satisfies (b) = bÔẼ ∩ Ẽ = b and bp ≡ 1 (mod N) for all p|N . Here

U(Φ̃, N) = {x ∈ Ẽ×
f : NΦ̃(x) ∈ E×((1 +NÔE) ∩ Ô×

E)}.

Proposition 3.3. (1) For every CM point τ = τ(a, ξ, a⃗) ∈ X0(C), its field of definition is

the class field H(Φ̃, N).

(2) For a CM point τ = τ(a, ξ, a⃗) ∈ X ∗(C), its field of definition is the class field H∗(Φ̃, N)

associated to the class group Cl∗(Φ̃, N) = Ẽ×
f /U∗(Φ̃, N), where

U∗(Φ̃, N) = {b ∈ Ẽ×
f : NΦ̃(b) = αu : α ∈ E×, αᾱ = N(b), ϵ(u) ∈ K∗(N)}.

Proof. This proposition is a direct consequence of Theorem ?? and we give a sketch of (2) for

convenience. Let σ ∈ Aut(C) with σ|H∗(Φ̃,N) = σb−1 via the class field theory. Here we use

the normalization in [?] for the Artin map, i.e., σp(x) ≡ xN(p)( mod p). Let b = (b) be the

ideal of b. Assume τσ = τ , then AaNΦ̃(b)
∼= Aa, and so NΦ̃ b = αOE for some α ∈ E×. Write

NΦ̃ b = αu with u ∈ Ô×
E . So we have

τσ = τ(a, ξ
αᾱ

N(b)
,
1

N
ua⃗) = τ(a, ξ,

1

N
a⃗).
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This implies that we can change α properly to make αᾱ = N(b). Since the two symplectic

similitude bases 1
N ua⃗ and 1

N a⃗ of 1
N a/a with respect to the Weil pairing have to be equivalent,

i.e., differing only by v(d) for some d ∈ (Z/N)×, one has ϵ(u) ∈ K∗(N). The other way is the

same.

Notice that µN ⊂ H(Φ̃, N) and X0 = X ∗
Q(µN ), so one has that H(Φ̃, N) = H∗(Φ̃, N)(µN ).

We remark that the class field H∗(Φ̃, N) might depends on the map ϵ in (??), and thus the

CM point τ . It is an interesting question whether and how H∗(Φ̃, N) really depends on τ . For

example, do different Galois orbits in CM(E,Φ) have the same cardinality? (or does the index

[H∗(Φ̃, N) : Ẽ] depend on τ?)

Theorem 3.4. Let τ = τ(a, ξ, a⃗) ∈ CM(E,Φ) ∈ X(N)(C). Let σ ∈ Aut(C/Ẽ) and [b] ∈
Cl(Φ̃, N) such that σ|H(Φ̃,N) = σb−1 via the class field theory. Choose an (ordered) symplectic

basis c⃗ of aNΦ̃(b) with respect to the symplectic form EξN(b)−1 such that

ci ≡ ai (mod N), 1 ≤ i ≤ g, ci ≡ ai N(b) (mod N), g + 1 ≤ i ≤ 2g.

Then

τ(a, ξ, a⃗)σ = τ(aNΦ̃(b), ξN(b)
−1, c⃗).

Proof. Choose b ∈ Ẽ×
f such that (b) = b and bp = 1 for all primes of Ẽ above N , as in (??).

We may assume that b is integral. Then Theorem ?? implies

(Aa, Eξ,
1

N
a⃗)σ = (AaNΦ̃(b), EξN(b)−1 ,

1

N
NΦ̃(b)⃗a).

Notice

⟨ 1
N

NΦ̃(b)ai,
1

N
NΦ̃(b)aj⟩we ≡

N(b)

N(b)
Eξ(ai, aj) (mod N)

≡ 1

N(b)
Eξ(ai, aj) (mod N).

So one has in ( 1
N aNΦ̃(b))/aNΦ̃(b),

1

N
ci =

1

N
NΦ̃(b)ai, 1 ≤ i ≤ g,

and
1

N
ci =

1

N
NΦ̃(b)N(b)ai, g + 1 ≤ i ≤ 2g.

So 1
N c⃗ = v(N(b))( 1

N NΦ̃(b)⃗a). Indeed, for a prime p of E above N , it is true by our choice of c⃗

and that NΦ̃ bp = 1. For p - N , both sides are zero. Therefore,

(Aa, Eξ,
1

N
a⃗)σ = (AaNΦ̃(b), EξN(b)−1 , c⃗),

i.e.,

τ(a, ξ, a⃗)σ = τ(aNΦ̃(b), ξN(b)
−1, c⃗).
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Let f(τ) be a memormorphic modular function on Hg for Γ(N), viewed also as a rational

function on X ∗(C), and let

f(τ) =
∑

T∈Symg(Z)∗
c(T )qTN

be the Fourier expansion of f(τ) with c(n) ∈ C and qTN = e( 1
N trTτ). For σ ∈ Aut(C), fσ, as a

rational function on X ∗(C), is defined to satisfy the following condition: for every P ∈ X ∗(C),
one has

f(P )σ = fσ(Pσ).

By the q-expansion principle, fσ has the following Fourier expansion:

fσ(τ) =
∑
T

c(T )σqTN .

Now the following explicit Galois action formula on CM values follows directly from Theo-

rems ?? and ??.

Corollary 3.5. Let f(τ) be a memomorphic modular function on Hg for Γ(N) (also momo-

morphic at cusps). Let τ = τ(a, ξ, a⃗) ∈ CM(E,Φ) be a CM point on X(N). Let σ ∈ Aut(C/Ẽ),

and let [b] ∈ Cl(Φ̃, N) such that σ|Ẽab = σb−1 . Then

f(τ)σ = fσ(τ(aNΦ̃ b, ξN(b)−1, c⃗)).

where τ(aNΦ̃ b, ξN(b)−1, c⃗) = τσ is given as in Theorem ??.

Proof. Let X be a toriodal compactification of X ∗/Q which is a projective algebraic variety. By

our assumption, f is a rational function on X. So f(τ)σ = fσ(τσ), and the first claim follows

directly from Theorem ??.

The case N = 2 and g = 2 is used in [?] and was the initial motivation for this work.

Remark 3.6. It should be very interesting to work out the whole Galois orbit of a CM point

under Aut(C/Q). It should be doable using Deligne and Langlands’ generalization of Theorem

?? (see [?]).

Remark 3.7. There is another group acting on CM(E,Φ). Let

C0(E,N) =
{(b, α ∈ Q>0, b ∈ b/Nb) : NE/F b = αOF , bb̄α

−1 ≡ 1 (mod N)}
{(ξOE , ξξ̄, ξ) : ξ ∈ E×, ξ ≡ 1 (mod N)}

.

The action is given as follows.

(b, α, b)(a, ξ,
1

N
a⃗) = (ab, α−1ξ,

b

N
a⃗).

4 Reciprocity law

In this section, we will use Corollary ?? to give another proof of Streng’s explicit Shimura

reciprocity law and the original Shimura reciprocity law. We need some notations before stating

their theorems ([?], [?], [?]). We will mainly follow [?] in the review and refer to it for more

detail. Let FN be the field of meromorphic Siegel modular functions g1
g2

where gi are holomorphic
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Siegel modular forms of level N and equal weight with Fourier coefficients in Q(µN ), and g2 ̸= 0.

By the q-expansion principle, one has FN = Q(µN )(X0) = Q(µN )(X ∗). let F∞ = ∪FN . The

following proposition is due to Shimura, see [?, Propositions 2.1, 3.1]. Let G(R)+ be the

subgroup of G(R) with µ(g) > 0, G(A)+ = G(Af ) × G(R)+ and G(Q)+ = G(R)+ ∩ G(Q).

Recall G = GSpg (GSp2g in Streng’s notation).

Proposition 4.1. (a) There is a unique action of G(A)+ on F∞ satisfying the following

condition:

1. For γ ∈ G(Q)+, one has fγ(τ) = f(γτ),

2. for x ∈ A×, one has fv(x) = fσx . Here σx ∈ Gal(Q(µ∞)/Q is the Artin map image of

x via the class field theory, v(x) = diag(Ig, xIg), and fσ(τ) is the new modular function

with σ acts on the Fourier coefficients of f .

3. for any N ≥ 1, the group K(N)×G(R)× acts on FN trivially. Here we recall that K(N)

is the compact open subgroup of G(Af ) defining X .

(b) There is a unique action of G(Z/N) on FN as follows:

1. The action of Spg(Z/N) on FN is given by fγ (mod N) = fγ for γ ∈ Spg(Z), where fγ is

given by (a)(1) above,

2. for any x ∈ (Z/N)×, fv(x) = fσx .

Now we are ready to give a direct proof of Streng’s explicit reciprocity law (without using

Shimura’s reciprocity law). Please note that we only deal with the case of maximal order of E

while Shimura and Streng deals with general case, although our method works in general too.

Theorem 4.2. ([?, Theorem 2.4]) Let τ = τ(a, ξ, a⃗) ∈ X(N) be a CM point of CM type (E,Φ)

as before. Let σ = σb−1 ∈ Gal(H(Φ̃, N)/Ẽ). Let b⃗ be a symplectic basis of aNΦ̃(b) with respect

to EξN(b)−1 . Let M ∈ GSpg(Q)+ such that M (⃗a) = b⃗. Then M is N -integral and invertiable

modulo N . Let U = M−1 (mod N) ∈ GSpg(Z/N). Then for any f ∈ FN , one has

f(τ)σ = fU (Mτ).

Proof. By Corollary ??, one has

f(τ)σ = fσ(τ(aNΦ̃(b), ξd, c⃗))

where d = N(b)−1 and c⃗ is the symplectic basis of aNΦ̃(b) with respect to Edξ given in Theorem

??. Let Cl(Z, N) be the ray class group of Q with modulus N , its associated class field is Q(µN ).

Notice that the norm map maps Cl(Φ̃, N) onto Cl(Z, N) (this also explains Q(µN ) ⊂ H(Φ̃, N).

So by the class field theory, one has Q(µN ) ⊂ H(Φ̃, N), and

σb−1 |Q(µN ) = σN(b)−1 |Q(µN ).

So fσ = fσd = fv(d), and

f(τ)σ = fv(d)(τ(aNΦ̃(b), ξd, c⃗))

Let γ ∈ Spg(Z) such that γ(⃗b) = c⃗. Then γM(τ) = τ(aNΦ̃(b), ξd, c⃗). On the other hand,

Ma⃗ = b⃗ implies µ(M) = d−1 and thus µ(U) = d (mod N), and U (⃗b) = a⃗ (mod N). So

U = v(d)γ (mod N).
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Therefore

fU (Mτ) = fv(d)(γMτ) = fv(d)(τ(aNΦ̃(b), ξd, c⃗)) = f(τ)σ

as claimed.

Finally, we derive Shimura’s reciprocity law in its original adelic form ([?, Page 57]). Let

τ = τ(a, ξ, a⃗) ∈ CM(E,Φ) ∈ X(N) as before. Recall the maps ϵ and g in (??) and (??). The

following is the Shimura’s reciprocity law ([?, Page 57]) (see also [?, Theorem 3.4]).

Theorem 4.3. (Shimura) Let τ = τ(a, ξ, a⃗) ∈ CM(E,Φ) ∈ X(N) be a CM point of CM type

(E,Φ), and let g : Ẽ×
A → GSpg(A)+ be the adelization of the map g defined in (??). Then for

any f ∈ F∞ such that f(τ) is finite, and any b ∈ Ẽ×
A , we have

f(τ) ∈ Ẽab, and f(τ)σb−1 = fg(b)(τ).

Proof. We can choose N big enough so that f ∈ FN , and view then τ as a CM point on

X(N). So f(τ) ∈ H(Φ̃, N), and both sides of the identity depends only on the idele class

[b] ∈ Ẽ×\Ẽ×
f /U(Φ̃, N). Therefore we may assume that bp = 1 for all primes of Ẽ above N ,

and let b = (b) be the fractional ideal of Ẽ associated to b. Let τσ = (aNΦ̃(b), ξN(b)−1, c⃗)

as in Theorem ??. We write â = a ⊗Z Ẑ, and g = g(b). Then ̂aNΦ̃(b) has two similitude

symplectic Ẑ-bases g(⃗a) = NΦ̃ ba⃗ and c⃗ (with respect to Eξ). So there is γ ∈ GSpg(Ẑ) such

that γ−1g(⃗a) = c⃗ and µ(γ−1) = N(b)
N(b) ∈ Ẑ×. Let M = γ−1g ∈ GSpg(Af ) with µ(M) = N(b).

Since a⃗ and c⃗ = M (⃗a) are both similitude symplectic Q-bases of E (with respect to Eξ), one

has M ∈ GSpg(Q)+. Write γ = γ1v(
N(b)
N(b) ) with γ1 ∈ Spg(Ẑ). Recall the condition on c⃗ in

Theorem ?? and that bp = 1 for all p|N , one sees that γ1 maps a⃗ to a⃗ modulo N . So γ1 ≡ 1

(mod N). Now g = γ1v(
N(b)
N(b) )M (since we write elements in G as maps in the proof, this order

of decomposition is correct), one has by Proposition ?? that

fg(τ) = fv(
N(b)
N(b)

)(Mτ) = fσN(b)−1 (τ(aNΦ̃(b), ξN(b)−1, c⃗)) = f(τ)σ

as claimed.
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